Основные физиологические свойства сердечной мышцы. Сокращение сердечной мышцы Сокращения сердечной мышцы возникают под влиянием


Автоматия - способность сердечной мышцы к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце. Благодаря автоматии автономное (извлеченное из организма) сердце способно некоторое время самостоятельно сокращаться. Импульсы в сердечной мышце возникают благодаря деятельности атипических мышечных волокон, заложенных в некоторых участках миокарда - внутри них спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусовым , или синоатриальным, узлом. Он производит импульсы с частотой 60-80 раз в минуту и является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковым, или атриовентрикулярным , узлом. Третий участок - пучок Гиса - атипические волокна, лежащие в межжелудочковой перегородке. От пучка Гиса отходят тонкие волокна атипической ткани - волокна Пуркинье, разветвляющиеся в миокарде желудочков. Все участки атипической ткани способны самостоятельно генерировать импульсы; в синусовом узле их частота самая высокая, его называют водителем ритма первого порядка, другие центры автоматии подчиняются этому ритму. Совокупность всех центров автоматии составляют проводящую систему сердца, благодаря которой волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду и обеспечивает последовательное сокращение отделов сердца.

Возбудимость сердечной мышцы проявляется в способности сердца приходить в состояние возбуждения под действием различных раздражителей (химических, механических, электрических и др.). Потенциал действия, возникающий в одной клетке, передается другим клеткам, что приводит к распространению возбуждения по всему сердцу.

Сократимость - способность полости сердца сокращаться, обусловленная свойством клеток миокарда отвечать на возбуждение сокращением. Это свойство сердечной мышцы позволяет сердцу выполнять механическую работу по перекачиванию крови по сосудам: при сокращении полости сердца давление крови в сердечных камерах возрастает, и кровь под давлением поступает в артерии. Работа сердечной мышцы подчиняется закону «все или ничего»: если на сердечную мышцу оказывать раздражающее действие различной силы, мышца каждый раз отвечает максимальным сокращением. Если сила раздражителя не достигает порогового значения, то сердечная мышца не отвечает сокращением.

В работе сердца как насоса выделяют три фазы, сокращение предсердий, сокращение желудочков и пауза, когда желудочки и предсердия одновременно расслаблены. Сокращение сердца называется систолой , расслабление - диастолой. Во время систолы предсердий кровь выталкивается в желудочки, так как обратный кровоток в вены невозможен из-за захлопывания клапанов, во время систолы желудочков кровь устремляется в большой и малый круги кровообращения (обратному току в предсердия препятствуют митральный и трехстворчатый клапаны, расположенные между предсердиями и желудочками), а за время диастолы камеры сердца находятся в расслабленном состоянии и вновь заполняются кровью. За одну минуту сердце взрослого здорового человека сокращается примерно 60-70 раз. Ритмичное чередование сокращения и расслабления каждого из отделов сердца обеспечивает неутомляемость сердечной мышцы.

Иннервация сердца очень сложна. Она осуществляется вегетативной нервной системой - блуждающим и симпатическими нервами, в составе которых имеются как чувствительные, так и двигательные волокна. В стенке самого сердца находятся нервные сплетения, состоящие из нервных узлов и нервных волокон. Двигательные нервы сердца осуществляют четыре основные функции: замедление, ускорение, ослабление и усиление деятельности сердца. Эти нервы относятся к вегетативной нервной системе. Таким образом, сердечная мышца, обладая способностью к самостоятельным сокращениям, подчиняется также «командам сверху» - регулирующему воздействию нервной системы, обеспечивающему оптимальную адаптацию сердечной деятельности потребностям организма в конкретной ситуации.

Сосудистая система. Кровеносные сосуды представляют собой систему полых эластичных трубок различного строения, диаметра и механических свойств, по которым протекает кровь. Сосуды подразделяются на артерии, вены и капилляры.

Артерии имеют толстые упругие стенки, состоящие из грех слоев. Наружный слой представляет собой соединительнотканную оболочку, средний слой состоит из гладкой мышечной ткани и содержит соединительнотканные эластические волокна, внутренний слой образован эндотелием, под которым расположена внутренняя эластическая мембрана. Эластические элементы артериальной стенки образуют единый каркас, работающий как пружина и обусловливающий эластичность артерий.

Разветвляясь, артерии переходят в артериолы , которые отличаются от артерий наличием только одного слоя мышечных клеток и могут регулировать скорость кровотока за счет сужения или расширения просвета. Артериола переходит в прекапилляр, в котором мышечные клетки разрознены и не составляют сплошного слоя. От него отходят многочисленные капилляры - самые мелкие кровеносные сосуды, которые соединяют артериолы с венулами (мелкими разветвлениями вен). Благодаря очень тонкой стенке капилляров в них происходит обмен различными веществами между кровью и клетками тканей. В зависимости от потребности в кислороде и других питательных веществах разные ткани имеют разное количество капилляров. Капилляры могут находиться в активном (открытом) и пассивном (закрытом) состоянии. При активизации обменных процессов или потребности в усиленной теплоотдаче объем крови, проходящей через орган, может увеличиваться за счет активизации дополнительного числа капилляров. В покое и при уменьшении теплоотдачи значительное количество капилляров переходит в пассивное состояние, уменьшая таким образом объем кровотока. Состояние капиллярной сети регулируется вегетативной нервной системой в зависимости от потребностей организма.

Сливаясь, капилляры переходят в посткапилляры , которые но строению аналогичны прекапилляру. Посткапилляры сливаются в венулы с просветом 40-50 мкм. Венулы объединяются в более крупные сосуды, несущие кровь к сердцу, - вены. Они, так же как и артерии, имеют стенки, состоящие из трех слоев, по содержат меньше эластических и мышечных волокон, поэтому менее упруги, их просвет поддерживается током крови. Вены имеют клапаны (полулунные складки внутренней оболочки), которые открываются по току крови, что способствует движению крови в одном направлении. Схематически строение кровеносных сосудов представлено на рис. 4.6.

Рис. 4.6.

Человек и все позвоночные животные имеют замкнутую кровеносную систему. Кровеносные сосуды сердечно-сосудистой системы образуют две основные подсистемы: большой и малый круги кровообращения (рис. 4.7).

Сосуды большого круга кровообращения соединяют сердце со всеми другими частями тела. Большой круг кровообращения начинается в левом желудочке, откуда выходит аорта, а заканчивается в правом предсердии, куда впадают полые вены. Как часть большого круга кровообращения выделяют третий (сердечный) круг, снабжающий кровью само сердце. Он состоит из двух венечных, или коронарных, артерий, отходящих от аорты, и впадает в правое предсердие через венечную пазуху.

Сосуды малого круга кровообращения переносят кровь от сердца к легким и обратно. Малый круг кровообращения начинается правым желудочком, из которого выходит легочный ствол, а заканчивается левым предсердием, в которое впадают легочные вены.

Рис. 4.7.

1 - сердце; 2 - малый (легочный) круг кровообращения; 3 - большой круг кровообращения

Любая слабость отражается на кровотоке, требует компенсаторной перестройки, слаженного функционирования системы кровоснабжения. Недостаточная способность к приспособлению вызывает критическое снижение работоспособности сердечной мышцы и ее заболевания.

Выносливость миокарда обеспечивается его анатомическим строением и наделенными возможностями.

Особенности строения

Принято по размеру стенки сердца судить о развитии мышечного слоя, потому что эпикард и эндокард в норме представляют собой очень тонкие оболочки. Ребенок рождается с одинаковой толщиной правого и левого желудочка (около 5 мм). К подростковому возрасту левый желудочек увеличивается на 10 мм, а правый всего на 1 мм.

У взрослого здорового человека в фазе расслабления толщина левого желудочка колеблется от 11 до 15 мм, правого - 5–6 мм.

Особенностью мышечной ткани являются:

  • поперечнополосатая исчерченность, образованная миофибриллами клеток кардиомиоцитов;
  • наличие волокон двух видов: тонких (актиновых) и толстых (миозина), связанных поперечными мостиками;
  • соединением миофибрилл в пучки, разной длины и направленности, что позволяет выделить три слоя (поверхностный, внутренний и средний).

Сердечная мышца по строению непохожа на скелетную и гладкомышечную мускулатуру, обеспечивающую движение и защиту внутренних органов

Морфологические особенности структуры обеспечивают сложный механизм сокращения сердца.

Как сокращается сердце?

Сократимость - одно из свойств миокарда, заключающееся в создании ритмических движений предсердий и желудочков, позволяющих прокачивать кровь в сосуды. Камеры сердца постоянно проходят через 2 фазы:

  • Систола - вызывается соединением актина и миозина под воздействием энергии АТФ и выхода ионов калия из клеток, при этом тонкие волокна скользят по толстым и пучки уменьшаются в длине. Доказана возможность волнообразных движений.
  • Диастола - происходит расслабление и разъединение актина и миозина, восстановление затраченной энергии за счет синтеза из полученных по «мостикам» ферментов, гормонов, витаминов.

Установлено, что силу сокращений обеспечивает входящий внутрь миоцитов кальций.

Весь цикл сокращения сердца, включая систолу, диастолу и общую паузу за ними, при нормальном ритме укладывается в 0,8 сек. Начинается с систолы предсердий, происходит наполнение кровью желудочков. Затем предсердия «отдыхают», переходя в фазу диастолы, а желудочки сокращаются (систола).

Подсчет времени «работы» и «отдыха» сердечной мышцы показал, что за сутки на состояние сокращения приходится 9 час 24 мин, а на расслабление - 14 час 36 мин.

Последовательность сокращений, обеспечение физиологических особенностей и потребностей организма при нагрузке, волнениях зависит от связи миокарда с нервной и эндокринной системами, способности принимать и «расшифровывать» сигналы, активно приспосабливаться к жизненным условиям человека.

Распространение возбуждения от синусового узла можно проследить по интервалам и зубцам ЭКГ

Сердечные механизмы, обеспечивающие сокращение

Свойства сердечной мышцы имеют такие цели:

  • поддержать сокращение миофибрилл;
  • обеспечить правильный ритм для оптимального наполнения полостей сердца;
  • сохранить возможность проталкивания крови в любых экстремальных для организма условиях.

Для этого миокард обладает следующими способностями.

Возбудимостью - способностью миоцитов отвечать на любых поступивших возбудителей. От сверхпороговых раздражений клетки защищают себя состоянием рефрактерности (потери способности к возбуждению). В нормальном цикле сокращения различают абсолютную рефрактерность и относительную.

  • В период абсолютной рефрактерности на протяжении от 200 до 300 мсек миокард не отвечает даже на сверхсильные раздражители.
  • При относительной - способен реагировать только на достаточно сильные сигналы.

Этим свойством мышца сердца не позволяет «отвлекать» механизм сокращения в фазу систолы

Проводимостью - свойством принимать и передавать импульсы к разным отделам сердца. Его обеспечивает особый вид миоцитов, имеющих отростки, очень похожие на нейроны головного мозга.

Автоматизмом - способностью создавать внутри миокарда собственный потенциал действия и вызывать сокращения даже в изолированном от организма виде. Это свойство позволяет проводить реанимацию в экстренных случаях, поддерживать кровоснабжение мозга. Велико значение расположенной сети клеток, их скопления в узлах при трансплантации донорского сердца.

Значение биохимических процессов в миокарде

Жизнеспособность кардиомиоцитов обеспечивается поступлением питательных веществ, кислорода и синтезом энергии в виде аденозинтрифосфорной кислоты.

Все биохимические реакции максимально идут во время систолы. Процессы называются аэробными, поскольку возможны только при достаточном количестве кислорода. В минуту левый желудочек потребляет на каждые 100 г массы 2 мл кислорода.

Для производства энергии используются доставленные с кровью:

  • глюкоза,
  • молочная кислота,
  • кетоновые тела,
  • жирные кислоты,
  • пировиноградная и аминокислоты,
  • ферменты,
  • витамины группы В,
  • гормоны.

В случае увеличения частоты сердечных сокращений (физическая нагрузка, волнения) потребность в кислороде возрастает в 40–50 раз, также значительно увеличивается расход биохимических компонентов.

Какими компенсаторными механизмами обладает сердечная мышца?

У человека не возникает патологии до тех пор, пока хорошо работают механизмы компенсации. Регуляцией занимается нейроэндокринная система.

Симпатический нерв доставляет к миокарду сигналы о необходимости усиленных сокращений. Это достигается более интенсивным метаболизмом, повышенным синтезом АТФ.

Аналогичное действие наступает при повышенном синтезе катехоламинов (адреналин, норадреналин). В таких случаях усиленная работа миокарда требует повышенного поступления кислорода.

Блуждающий нерв помогает уменьшить частоту сокращений во время сна, в период отдыха, сохранить запасы кислорода.

Важно учитывать рефлекторные механизмы приспособления.

Тахикардия вызывается застойным растяжением устьев полых вен.

Рефлекторное замедление ритма возможно при стенозе аорты. При этом повышенное давление в полости левого желудочка раздражает окончания блуждающего нерва, способствует брадикардии и гипотонии.

Продолжительность диастолы увеличивается. Создаются благоприятные условия для функционирования сердца. Поэтому стеноз устья аорты считается хорошо компенсированным пороком. Он позволяет пациентам дожить до преклонного возраста.

Как относиться к гипертрофии?

Обычно длительная повышенная нагрузка вызывает гипертрофию. Толщина стенки левого желудочка увеличивается более чем на 15 мм. В механизме образования важным моментом является отставание прорастания капилляров вглубь мышцы. В здоровом сердце количество капилляров на мм2 сердечной мышечной ткани составляет около 4000, а при гипертрофии показатель снижается до 2400.

Поэтому состояние до определенного момента считается компенсаторным, но при значительном утолщении стенки ведет к патологии. Обычно развивается в том отделе сердца, который должен усиленно работать, чтобы протолкнуть кровь сквозь суженное отверстие либо преодолеть препятствие сосудов.

Гипертрофированная мышца способна длительное время поддерживать кровоток при пороках сердца.

Мышца правого желудочка развита слабее, она работает против давления 15–25 мм рт. ст. Поэтому компенсация при митральном стенозе, легочном сердце удерживается недолго. Но правожелудочковая гипертрофия имеет большое значение при остром инфаркте миокарда, сердечной аневризме в зоне левого желудочка, снимает перегрузку. Доказаны значительные возможности именно правых отделов в тренировке при занятиях физическими упражнениями.

Утолщение левого желудочка компенсирует пороки аортальных клапанов, митральную недостаточность

Может ли сердце приспособиться к работе в условиях гипоксии?

Важным свойством приспособления к работе без достаточного поступления кислорода является анаэробный (бескислородный) процесс синтеза энергии. Очень редкое явление для органов человека. Включается только в экстренных случаях. Позволяет мышце сердца продолжить сокращения.

Негативными последствиями являются накопление продуктов распада и переутомление мышечных фибрилл. Одного сердечного цикла не хватает для ресинтеза энергии.

Однако подключается другой механизм: тканевая гипоксия рефлекторно заставляет надпочечники больше продуцировать альдостерон. Этот гормон:

  • увеличивает количество циркулирующей крови;
  • стимулирует повышение содержания эритроцитов и гемоглобина;
  • усиливает венозный приток к правому предсердию.

Значит, позволяет адаптировать организм и миокард к недостатку кислорода.

Как возникает патология миокарда, механизмы клинических проявлений

Заболевания миокарда развиваются под воздействием разных причин, но проявляются только при срыве адаптационных механизмов.

Длительная потеря мышечной энергии, невозможность самостоятельного синтеза при отсутствии компонентов (особенно кислорода, витаминов, глюкозы, аминокислот) приводят к истончению слоя актомиозина, разрывают связи между миофибриллами, заменяя их фиброзной тканью.

Это заболевание называется дистрофией. Оно сопутствует:

  • анемиям,
  • авитаминозам,
  • эндокринным расстройствам,
  • интоксикациям.

Возникает как следствие:

Пациенты ощущают такие симптомы:

В молодом возрасте наиболее частой причиной может быть тиреотоксикоз, сахарный диабет. При этом явных симптомов увеличения щитовидной железы не обнаруживается.

Воспалительный процесс мышцы сердца называется миокардитом. Он сопровождает как инфекционные заболевания детей и взрослых, так и несвязанные с инфекцией (аллергический, идиопатический).

Развивается в очаговом и диффузном виде. Разрастания воспалительных элементов поражают миофибриллы, прерывают проводящие пути, изменяют активность узлов и отдельных клеток.

В результате у пациента формируется сердечная недостаточность (чаще правожелудочковая). Клинические проявления складываются из:

  • болей в области сердца;
  • перебоев ритма;
  • одышки;
  • расширения и пульсации шейных вен.

На ЭКГ фиксируют атриовентрикулярные блокады разной степени.

Наиболее известное заболевание, вызванное нарушенным поступлением крови к мышце сердца, - ишемия миокарда. Она протекает в виде:

  • приступов стенокардии,
  • острого инфаркта,
  • хронической коронарной недостаточности,
  • внезапной смерти.

Все формы ишемии сопровождаются приступообразными болями. Их образно называют «криком голодающего миокарда». Течение и исход болезни зависит от:

  • скорости оказания помощи;
  • восстановления кровообращения за счет коллатералей;
  • способности мышечных клеток адаптироваться к гипоксии;
  • образования крепкого рубца.

Скандальный препарат, включенный в список допинга за то, что дает дополнительную энергию мышце сердца

Как помочь сердечной мышце?

Наиболее подготовленными к критическим воздействиям остаются люди, занимающиеся спортом. Следует четко отличать кардиотренинг, предлагаемый фитнес-центрами и лечебную гимнастику. Любые кардио-программы рассчитаны на здоровых людей. Усиленная тренированность позволяет вызвать умеренную гипертрофию левого и правого желудочков. При правильно поставленной работе человек сам контролирует по пульсу достаточность нагрузки.

Лечебная физкультура показана людям, страдающим какими-либо заболеваниями. Если говорить о сердце, то она имеет целью:

  • улучшить регенерацию тканей после инфаркта;
  • укрепить связки позвоночника и устранить возможность защемления околопозвоночных сосудов;
  • «подстегнуть» иммунитет;
  • восстановить нервно-эндокринную регуляцию;
  • обеспечить работу вспомогательных сосудов.

ЛФК назначают врачи, комплекс лучше осваивать под наблюдением специалистов в санатории или лечебном заведении

Лечение препаратами назначается в соответствии с их механизмом действия.

Для терапии в настоящее время имеется достаточный арсенал средств:

  • снимающих аритмии;
  • улучшающих метаболизм в кардиомиоцитах;
  • усиливающих питание за счет расширения венечных сосудов;
  • повышающих устойчивость к условиям гипоксии;
  • подавляющих лишние очаги возбудимости.

С сердцем шутить нельзя, экспериментировать на себе не рекомендуется. Лечебные средства способен назначить и подобрать только врач. Чтобы как можно дольше не допустить патологических симптомов, нужна правильная профилактика. Каждый человек может помочь своему сердцу, ограничив прием алкоголя, жирной пищи, бросив курить. Регулярные физические упражнения способны решить множество проблем.

Здравствуйте, мне 41 год, я отжимался от пола с одного раза пораз утром и вечером, теперь у меня болит в области сердца после даже малейшей физической нагрузки или при поднятии тяжести, подскажите пожалуйста, что это с моим сердцем и как лечить?

Особенности сократимости сердечной мышцы

Зависимость “сила стимула- сила сокращения”

В отличие от скелетной мышцы сила сокращения сердечной мышцы не зависит от силы раздражителя  закон “всё или ничего”. В опыте изолированное сердце лягушки на допороговое раздражение вообще не отвечает, но как только сила раздражения достигает порогового уровня, возникает его максимальное сокращение (рис.5).

Дальнейшее увеличение силы раздражающего тока не изменяет величины сокращения. Подчинение сердечной мышцы закону “всё или ничего” объясняется особенностями строения миокарда, клетки которого образуют функциональный синцитий: все мышечные клетки соединены друг с другом вставочными дисками с очень низким электрическим сопротивлением и в функциональном плане представляют собой единое образование. Поэтому пороговый раздражитель приводит к возбуждению сразу всех кардиомиоцитов и развитию максимального сокращения.

Рис. 5. Независимость силы сокращений миокарда (а) от силы раздражителя (б) – закон «все или ничего». Пороговый стимул отмечен звездочкой.

Рис.6. Зависимость силы сокращений миокарда (а) от частоты стимуляции (б) – «лестница Боудича», полученная на сердце лягушки, предварительно остановленном с помощью первой лигатуры Станниуса.

Закон “всё или ничего” для миокарда не абсолютен. Если в эксперименте раздражать мышцу желудочков импульсами возрастающей частоты, не меняя их силы, то величина сокращения миокарда будет возрастать на каждый следующий стимул (лестница Боудича или хроноинотропный эффект). Объясняется такой эффект тем, что при переходе к более высокой частоте стимуляции промежутки времени между сокращениями укорачиваются, вследствие чего не происходит полного удаления ионов кальция, поступивших в клетку при очередном сокращении. В результате с каждым последующим сокращением концентрация внутриклеточного кальция возрастает и соответственно возрастает и сила сокращения (рис 6).

Возбудимость сердечной мышцы во время сокращения.

Для изучения возбудимости надо наносить раздражение электрическим током пороговой или сверхпороговой силы на сердце лягушки в разные фазы его цикла. При этом сердце не ответит на раздражение, если оно будет нанесено в период систолы, когда миокард находится в состоянии абсолютной невозбудимости, т.е. рефрактерности (рис.11). Обратите внимание, что рефрактерный период занимает всю систолу и начало диастолы (рис.7). С началом расслабления возбудимость миокарда начинает восстанавливаться, и наступает фаза относительной рефрактерности.

Рис. 7. Графики сокращения, потенциала действия и возбудимости мио карда желудочков.

Экстрасистола желудочков. Нанесение сверхпорогового раздражения в фазу относительной рефрактерности способно вызвать внеочередное сокращение желудочков  экстрасистолу. При этом пауза, следующая за желудочковой экстрасистолой, длится дольше, чем обычная, так называемая компенсаторная пауза. Большая длительность этой паузы объясняется тем, что очередной импульс из синусного узла застаёт желудочки в период рефрактерности уже полученной экстрасистолы, и нормальное их сокращение возможно только с приходом очередного импульса (рис.8).

У человека дополнительные, внеочередные импульсы, вызывающие экстрасистолу, могут возникать в норме в элементах проводящей системы или в самом миокарде желудочков при активации симпатического отдела вегетативной нервной системы (например при эмоциональном возбуждении), а также при патологических процессах в миокарде.

Итак, абсолютная невозбудимость миокарда, продолжающаяся всю систолу, делает сердце нечувствительным в этот период к дополнительным раздражениям, исключает возможность длительного непрерывного (тетанического) сокращения, и тем самым помогает сердцу работать в режиме одиночного сокращения. Длительная рефрактерность гарантирует продолжение диастолы даже при возникновении внеочередных раздражений, и создаёт условия для наполнения желудочков кровью, т.е. для поддержания минутного объёма сердца.

Рефрактерность кардиомиоцитов обеспечивает также нормальную последовательность распространения возбуждения в сердце, препятствует возникновению кругового движения возбуждения по миокарду.

рис.8. График желудочковой экстрасистолы

Стрелками отмечен момент нанесения внеочередного раздражения, треугольничками  момент поступления очередного импульса из синоатриального узла.

Синусовая экстрасистола. При эмоциональном возбуждении или под влиянием воспалительных изменений внеочередной импульс возбуждения может возникнуть в самом синусном узле, следствием которого будет полный внеочередной цикл сердца, за которым в отличие от желудочковой экстрасистолы не следует компенсаторная пауза. Понятно, что пауза перед внеочередным сокращением будет укорочена (рис. 9).

Рис.9. Синусовая экстрасистола (обозначена стрелочкой).

Для продолжения скачивания необходимо собрать картинку:

Механизм сокращения сердечной мышцы

^ Механизм мышечного сокращения.

Сердечная мышца состоит из мышечных волокон, кото­рые имеют диаметр от 10 до 100 микрон, длину - от 5 до 400 микрон.

В каждом мышечном волокне содержится до 1000 со­кратительных элементов (до 1000 миофибрилл - каждое мы­шечное волокно).

Каждая миофибрилла состоит из множества параллель­но лежащих тонких и толстых нитей (миофиламентов).

Это собранные в пучок примерно 100 молекул белка миозина.

Это две линейные молекулы белка актина, спирально скрученные друг с другом.

В желобке, образованном нитями актина, расположен вспомогательный белок сокращения - тропомиозин.В непо­средственной близости от него к актину прикреплен еще один вспомогательный белок сокращения - тропонин.

Мышечное волокно делится на саркомеры Z-мембранами. К Z-мембранеприкреплены нити актина.Между двумя нитями актина лежит одна толстая нить миозина (между двумя Z-мембранами), и она взаимодействует с ни­тями актина.

На нитях миозина есть выросты (ножки), на концах вы­ростов имеются головки миозина (150 молекул миозина). Го­ловки ножек миозина обладают АТФ-азной активностью. Именно головки миозина (именно эта АТФ-аза) катализирует АТФ, высвобождающаяся при этом энергия обеспечивает мышечные сокращения (за счет взаимодействия актина и миозина). Причем АТФазная активность головок миозина проявляется только в момент их взаимодействия с активными центрами актина.

У актинаимеются активные центры определенной формы, с которыми будут взаимодействовать головки мио­зина.

Тропомиозинв состоянии покоя, т.е. когда мышца расслаблена, пространственно препятствует взаимодействию го­ловок миозина с активными центрами актина.

В цитоплазме миоцита имеется обильная саркоплазматическая сеть - саркоплазматический ретикулум (СПР).Саркоплазматический ретикулум имеет вид канальцев, иду­щих вдоль миофибрилл и анастомозирующих друг с другом. В каждом саркомере саркоплазматический ретикулум обра­зует расширенные участки - концевые цистерны.

Между двумя концевыми цистернами располагается Т-трубочка. Трубочки представляют собой впячивание цитоплазматической мембраны кардиомиоцита.

Две концевых цистерны и Т-трубочка называются триадой.

Триада обеспечивает процесс сопряжения процессов воз­буждения и торможения (электромеханическое сопряжение). СПР выполняет роль «депо» кальция.

В мембране саркоплазматического ретикулума имеется кальциевая АТФаза, которая обеспечивает транспорт каль­ция из цитозоля в концевые цистерны и тем самым поддер­живает уровень ионов кальция в цитотоплазме на низком уровне.

В концевых цистернах СПР кардиомиоцитов содержатся низкомолекулярные фосфопротеины, связывающие кальций.

Кроме того, в мембранах концевых цистерн имеются кальциевые каналы, ассоциированные с рецепторами риано-дина, которые также есть в мембранах СПР.

При возбуждении кардиомиоцита, при значении ПМ -40 мв, открываются потенциалзависимые кальциевые каналы цитоплазматической мембраны.

Это повышает уровень ионизированного кальция в ци­топлазме клетки.

Наличие Т-трубочек обеспечивает увеличение уровня кальция непосредственно в область концевых цистерн СПР.

Это увеличение уровня ионов кальция в области конце­вых цистерн СПР называют триггерным, так как они (не­большие триггерные порции кальция) активируют рианоди-новые рецепторы, ассоциированные с кальциевыми каналами мембраны СПР кардиомиоцитов.

Активация рианодиновых рецепторов повышает про­ницаемость кальциевых каналов концевых цистерн СПР. Это формирует выходящий кальциевый ток по градиенту концентрации, т.е. из СПР в цитозоль в область концевых цистерн СПР.

При этом из СПР в цитозоль переходит в десятки раз больше кальция, чем приходит в кардиомиоцит из вне (в виде триггерных порций).

Сокращение мышц возникает тогда, когда в районе ни­тей актина и миозина создается избыток ионов кальция. При этом ионы кальция начинают взаимодействовать с молекула­ми тропонина. Возникает тропонин-кальциевый комплекс. Вре­зультате молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин сдвигает мо­лекулу тропомиозина в желобке. Перемещение молекул тропомиозина делает доступными центры актина для голо­вок миозина.

Это создает условия для взаимодействия актина и мио­зина. При взаимодействии головок миозина с центрами акти­на на короткий момент формируются мостики.

Это создает все условия для гребкового движения(мостики, наличие шарнирных участков в молекуле миозина, АТФ-азная активность головок миозина). Происходит сме­щение нити актина и миозина относительно друг друга.

Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочение

Процесс расслабления саркомеров достаточно сложен. Он обеспечивается удалением избытка кальция в концевые цистерны саркоплазматического ретикулума. Это активный процесс, требующий определенных затрат энергии. В мем­бранах цистерн саркоплазматического ретикулума имеются необходимые транспортные системы.

Так представляется мышечное сокращение с позиций теории скольжения.Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного уко­рочения нитей актина и миозина, а происходит их скольже­ние относительно друг друга.

Мембрана мышечного волокна имеет вертикальные уг­лубления, которые располагаются в районе нахождения сар-коплазматического ретикулума. Эти углубления получили название Т-системы (Т-трубочки). Возбуждение, которое возникает в мышце, осуществляется обычным путем, т.е. за счет входящего натриевого тока.

Параллельно открываются кальциевые каналы. Наличие Т-систем обеспечивает увеличение концентрации кальция непосредственно около концевых цистерн СПР. Увеличение кальция в области концевых цистерн активирует рианодиновые рецепторы, что повышает проницаемость кальциевых ка­налов концевых цистерн СПР.

Обычно концентрация кальция (Са ++) в цитоплазме рав­на 10" г/л. При этом в районе сократительных белков (актина и миозина) концентрация кальция (Са ++) становится равной,10

6 г/л (т.е. возрастает в 100 раз). Это и запускает процесс сокращения.

Т-системы, обеспечивающие быстрое появление каль­ция в области концевых цистерн саркоплазматического рети­кулума, обеспечивают и электромеханическое сопряжение(т.е. связь между возбуждением и сокращением).

Насосная (нагнетательная) функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из двух процессов: сокращения (систолы) и расслабления (диа­столы). Различают систолу и диастолу желудочков и пред­сердий.

^ Давление в полостях сердца в различные фазы сердечного цикла (мм рт. ст.).

Систола желудочков (0,35 сек).

Период напряжения (0,1 сек).

Состоит из двух фаз: фазы асинхронного сокращения и фазы изометрического сокращения.

Отсутствие слитного сокращения кардиомио-цитов желудочков, разрозненное изменение напря­жения отдельных мышечных волокон, давление в полостях желудочков в эту фазу практически не из­меняется.

^ 2. Фаза изометрического сокращения- 0,05 сек.Эта фаза начинается с момента охвата возбуждением желудочков. При этом атриовентрикулярные клапаны завер­шили процесс закрытия, аортальные клапаны еще не откры­вались.

Вследствие слитного сокращения мускулатуры желу­дочков:

Существенно повышается давление в их полостях (до величин в отводящих сосудах:15-20 мм рт.ст. в пра­вом желудочке и 80 мм рт.ст. - в левом желудочке);

Значительно повышается тонус мышечных волокон при постоянной их длине, так как кровь, заполняющая желудочки, как и любая жидкость, несжимаема.

Состоит из двух фаз: фазы быстрого изгнания и фазы медленного изгнания. Формирует ударный (систолический)

^ Понятие об ударном (систолическом) объеме крови -

количество крови, которое нагнетается каждым желудочком

в магистральный сосуд (аорту или легочную артерию) при одном сокращении сердца.

Вследствие большого перепада давления между полостями желудочков и отводящими сосудами в эту фазу изгоняется до 70% от ударного (систолическо­го) объема.

Изгоняются 30% У О. Формируется конечноси-столический объем.

Понятие о конечносистолическом объеме желудоч­ков (резервный объем)(КСО) - объем желудочка при за­вершении систолы.

Предшествует диастоле (в этот момент на ЭКГ регист­рируется зубец Т, характеризующий восстановление поляр­ности кардиомиоцитов, характерной для ПП).

Состоит из фазы изометрического наполнения и перио­да изгнания.

Фаза изометрического расслабления - 0,10 сек.

Длится до того момента, когда давление в полостях же­лудочков упадет ниже давления крови в предсердиях.

Период наполнения - 0,5 сек.

Состоит из фазы быстрого наполнения, фазы медленно­го наполнения и фазы дополнительного наполнения.

Вследствие того, что во время систолы желу­дочков в предсердиях давление крови последова­тельно возрастало вследствие постоянного венозного притока, сразу после открытия атриовентрикулярных клапанов кровь под давлением устремляется в желу­дочки.

Из-за постепенного выравнивания давления процесс пассивного наполнения замедляется.

3. Фаза дополнительного наполнения желудочков–О, 1 сек.

Обеспечивается систолой предсердий. При этом активно нагнетается последняя порция крови (5-10 % от УО), формируется конечнодиастоличе-ский объем(КДО)- объем желудочка в конце диа­столы отражает наполнение сердца кровью.

^ 53. Оценка нагнетательной (насосной) функции сердца…

Насосная/ нагнетательная/ функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из 2 процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий.

Продолжительность фаз цикла при условной его длительности 1 сек

Период напряжения (0,1 сек):

1. Фаза асинхронного сокращения - 0,05 сек. (нет слитного сокращения желудочков, давление в полостях желу­дочков практически не изменяется).

2. Фаза изометрического сокращения - 0,05 сек. (вследствие слитного сокра­ще­­­ния мускулатуры желудочков существенно повышается давление в их полостях (до величин в отводящих сосудах:мм рт. ст. в правом желудочке и 80 - в левом); значительно повышается тонус при постоян­ной длине мышечных волокон, т.к. кровь, заполняющая желудочки, как и любая жидкость, несжимаема).

Понятие о ударном/систолическом/ объеме крови -количество крови, которое нагнетается каждым желудочком в магистральный сосуд/аорту или легочную артерию/ при одном сокращении сердца.

Дата добавления:2 | Просмотры: 851 | Нарушение авторских прав

Сокращение сердечной мышцы

строение и развитие сердечно-сосудистой системы

КРОВЕНОСНЫЕ И ЛИМФАТИЧЕСКИЕ СОСУДЫ

СЕРДЦЕ (COR)

Некоторые особенности сокращения сердечной мышцы

В главе седьмой были сообщены те явления, которые характеризуют сокращения поперечнополосатых мышечных волокон. Сердечная мышца, как мы видели, построена по тому же типу, и поэтому при ее сокращении можно наблюдать аналогичные явления. Однако есть и некоторые особенности, отличающие сердечные волокна от волокон скелетной мускулатуры. Прежде всего толокна сердечной мышцы сокращаются в несколько раз медленнее волокон скелетной мускулатуры. В соответствии с более медленным сокращением скрытый период раздражения более продолжителен. Далее, сердечная мышца на каждое раздражение, лежащее за порогом возбуждения, реагирует всегда максимальным сокращением, или, иначе говоря, сердце работает по закону «все или ничего». И, наконец, сердечная мышца, как бы её ни раздражали, не дает тетанического сокращения. Все перечисленные особенности сокращения, равно как и большая клеточность строения сердечного мышечного синцития, позволяют рассматривать мышечные волокна сердца, как бы занимающими среднее положение между внутренностной и скелетной мускулатурой.

Скелетная ткань сердца

Для того чтобы появился эффект сокращения мышечных волокон в органе, необходимо развитие опорных тканей или с руктур, к которым они должны прикрепляться.

Волокна миокарда прикрепляются к плотным образованиям, развивающимся внутри сердца и называемым сердечным скелетом. Основными частями этого скелета считаются сухожильные кольца (annuli fibrosi), окружающие венозные отверстия в основании желудочков, и примыкающие к ним фиброзные треугольники (trigona fibrosa), расположенные у корня аорты, и, наконец, перепончатая часть перегородки желудочков (septum membranaceum). Все эти элементы сердечного скелета образованы из плотных коллагеновых пучков соединительной ткани, переходящих постепенно в соединительную ткань миокарда. В составе соединительнотканных пучков, как правило, имеются тонкие эластиновые волокна. В фиброзных треугольниках, кроме того, постоянно встречаются островки хондроидной ткани, которая с возрастом может подвергнуться обызвествлению.

Иногда в узелках хондроидной ткани развивается и кость. У собак в сердечном скелете найден настоящий гиалиновый хрящ, а у быков - типичная кость.

Система проводящих волокон

В составе синцития сердечной мышцы имеется ещё система особых мышечных волокон, которая получила название проводящей ситемы (рис. 369).

Волокна проводящей системы слагаются в сетчатую структуру, построенную по тому же принципу, как и типичные волокна миокарда. Располагаясь по поверхности сердечной мышцы непосредственно под эндокардом, волокна проводящей системы рядом характерных признаков отличаются от типичных волокон, рассмотренных выше. Отдельные клеточные территории этих волокон больше обычных территорий миокарда, особенно те из них, которые занимают периферическое положение. Их величина зависит от богатства саркоплазмой, в которой иногда наблюдаются крупные светлые вакуоли (рис. 370 и 371) и значительное количество гликогена.

Миофибрилл немного. Они располагаются преимущественно на периферии саркоплазмы и идут неправильно, перекрещиваясь друг с другом.

Перечисленные признаки делают описываемые волокна весьма похожими на волокна, появляющиеся в ранних стадиях гистогенеза миокарда, когда и начинается самостоятельное (автономное) ритмическое сокращение сердца.

Отмеченное сходство в строении, а также ряд других признаков служат довольно веским основанием для того, чтобы волокна проводящей системы рассматривать как сохранившие эмбриональный характер.

Действительно, можно показать, что проводящие волокна сердца взрослого организма, будучи выделены из миокарда, продолжают ритмически сокращаться, так же как сокращаются и волокна эмбриональные. В то же время типичные волокна миокарда, выделенные из сердца взрослого организма, не способны к сокращению.

Таким образом, волокна проводящей системы для своего сокращения не требуют нервных импульсов, их сокращение автономно, тогда как типичные волокна миокарда, взятые из сердца взрослого организма, этой способностью не обладают.

Надо сказать, что описываемые волокна известны были уже давно под названием волокон Пуркинъе, но их значение и принадлежность к проводящей системе были установлены сравнительно недавно.

Расположение системы проводящих пучков и ее значение в ритмическом сокращении миокарда. Было обращено внимание на совпадение последовательного распространения сокращения различных отделов сердца с расположением волокон Пуркинье. В эмбриональном сердце на той стадии развития, когда оно представляет трубку, уже начавшую пульсировать, сокращение распространяется в следующем направлении.

Сначала сокращается венозный синус, затем последовательно зачатки предсердия, желудочков и луковицы аорты (bulbus arteriosus ). Так как в этот период зачаток сердца не получает никаких нервных импульсов, поскольку нервные волокна ещё не подросли к мышечной ткани, то можно допустить, что импульс начинается внутри органа в его тканях, и, в частности, в тканях венозного синуса, затем отсюда распространяется по всему зачатку. Так как в этот период зачаток сердца состоит уже почти целиком из мышечных волокон эмбрионального типа, то, очевидно, импульс распространяется только по ним.

Когда изучали сокращение сердца на более поздних стадиях развития, а также и у взрослых организмов, то было найдено, что импульс к сокращению возникает как раз в той части, которая развивается из,эмбрионального венозного синуса, т.е. в том месте, где верхняя полая вена входит в правое предсердие.

Изучение распределения волокон Пуркинье позволило обнаружить, что они как раз начинаются из этой синусной части и, распространяясь в виде пучков под эндокардом, образуют единую систему всех разделов сердца. Эта находка позволила предположить, что импульс

ц. сокращению всего миокарда распространяется по волокнам Пуркинье, которые поэтому можно рассматривать как специальную проводящую систему сердца. Разрушение отдельных частей этой системы в эксперименте на животных или расчленение ее на,изолированные части всецело подтверждало высказанное предположение. Ритмическое сокращение сердца возможно только при целостности этой системы. В настоящее время проводящая система изучена довольно подробно. Ее разделяют на два отдела: на синусноушковый и атриовентрикулярный . Первый представлен, так называемым синусным узлом (узел Кейт-Флака), лежащим под эпикардом между правым ушком и верхней полой веной (рис. 369, 1). Узел Кейт-Флака представляет собой скопление клеток Пуркинье веретеновидной формы (достигающее величины 2 см); между клетками располагается соединительная ткань, богатая эластиновыми волокнами (рис. 371, 6) сосудами и нервными окончаниями. От этого узла отходят два выроста - верхний и нижний; последний идет к нижней полой вене. Атриовентрикулярный отдел состоит из атриовентрикулярного узла, называемого узлом Ашоф-Тавара (2), лежащего в предсердиях близ атрио-вентрикулярной перегородки, и отходящего от него гисовского пучка (3), который входит в желудочковую (интервентрикулярную) перегородку и отсюда двумя стволами расходится по обоим желудочкам; последние разветвляются, располагаясь под эндокардом.

Атриовентрикулярный узел состоит из довольно значительных по своему размеру мышечных волокон, весьма богатых саркоплазмой, в которой всегда содержится гликоген (рис. 371, 3, 4). Переходя в пучок Гиса, проводящие волокна облекаются, слоем соединительной ткани, отделяющей его от окружающих тканей. Наиболее типично устроены волокна проводящей системы у копытных (например, у барана); у мелких животных они не отличаются от обычных волокон миокарда. Кроме описанных отделов проводящей системы, из которых узлы Кейт-Флака и Ашоф-Тавара считаются центрами распространения сокращения, за последние годы появились указания на присутствие добавочных центров, отличающихся от основных более медленным ритмом сокращения.

Вообще надо отметить, что у человека волокна вариируют, по своему виду приближаяь то к обычным волокнам сердечной мышцы, то к типичным волокнам Пуркинье. Однако всегда волокна проводящей системы переходят своими конечными разветвлениями непосредственно в волокна миокарда желудочков.

Изучение передачи импульсов по проводящей системе послужило хорошим подтверждением предположения, что сердечные сокращения, начиная с эмбрионального периода и кончая вполне развитым сердцем, автономны или, иначе говоря, они миогенной природы. Благодаря присутствию этой системы сердце и проявляет свою функциональную целостность.

Однако как раз по ходу пучков проводящей системы во взрослом организме идут и многочисленные нервные волокна. Поэтому анатомически вопрос о миогенной или неврогенной природе сердечных сокращений не может быть разрешен.

Несомненно одно: сокращения развивающегося сердца у эмбриона чисто миогенной природы, но в дальнейшем, при развитии нервных связей, импульсы, идущие из нервной системы, играют решающую роль в ритмике сердца, а стало быть, и в передаче импульсов по проводящей системе.

Перикардий. Околосердечная сумка имеет строение, общее для всех серозных оболочек, которое в нашем курсе будет более подробно рассмотрено ниже (на примере брюшины).

Работу сердца сложно переоценить. Ведь орган, размером с кулак, наполняет жизненной силой, кислородом весь организм. О том, как устроено сердце и каковы важнейшие свойства сердечной мышцы, поговорим в нашей статье.

1 Взгляд изнутри


Если мы посмотрим на сердце изнутри, мы увидим полый, четырехкамерный орган. Причем камеры разделены между собой двумя перпендикулярно расположенными перегородками, для циркуляции крови в сердечных камерах предусмотрены клапаны, через которые кровь беспрепятственно изливается при сердечных толчках, в то же время сердечные «швейцары» — клапаны, не допускают обратного хода крови и контролируют ее перемещение из верхних предсердных камер в желудочки. Сердце человека имеет 3 слоя, которые хорошо изучены и дифференцированы.

Рассмотрим их от внешнего к внутреннему:


Рассмотрев послойно строение сердца, перейдем к изучению важнейшей и загадочной мышцы человеческого тела — сердечной.

2 Знакомьтесь — миокард!


Сердечная мышца или миокард относится к поперечно-полосатым мышцам, но, в отличие от других, имеет свои особенности. Как выглядит поперечно-полосатая мышца, к примеру, конечностей? Это волокна, состоящие из многоядерных клеток, ведь так? С мышцей сердца все иначе: она представлена не волокнами, а сетью клеток с одним ядром (кардиомиоцитами), которые связаны между собой мостиками. Такая сеть в медицине имеет сложное название псевдосинтиций.

Можно выделить 2 отдела миокарда: мышечные слои предсердий и мышечные слои желудочков. Волокна каждого из двух отделов не переходят друг в друга, это позволяет верхним и нижним сердечным камерам независимо друг от друга участвовать в сокращении. В верхних сердечных камерах мышцы формируют два слоя: поверхностный — «обнимающий» обе сердечные камеры, и глубокий — принадлежащий отдельно каждому предсердию. Желудочковые мышцы и вовсе имеют 3 слоя:

  • 1 — поверхностный. Это тонкий слой, состоящий из продольных волокон, окутывающих обе нижние сердечные камеры;
  • 2 — средний слой, в отличие от наружного, не переходит с одной камеры на другую, а для каждого желудочка является самостоятельным;
  • 3 — внутренний слой, он формируется в результате загиба наружного слоя под средний, так называемый «завиток».

Довольно сложное строение имеет мышца сердца, оно и понятно, ведь и свойства у нее непростые. Рассмотрим последовательно свойства сердечной мышцы.

3 Автоматия

Данное физиологическое свойство объяснить нам поможет лягушка. Как? Очень просто! Так уж повелось, что это животное явилось классическим для изучения физиологических свойств сердечной мышцы. Ее препарированное сердце в физиологическом растворе может осуществлять самопроизвольные сердечные толчки ни много ни мало несколько часов! Почему это происходит? Дело в том, что, в отличие от скелетных мышц, сердечная не нуждается в возбуждающих импульсах извне.

В ее толще имеется собственный уникальный механизм, называемый пейсмейкерным, или водителем ритма. Он сам генерирует импульсы, которые возбуждают миокард. Основной водитель ритма располагается в узле синоатриальном, правопредсердном. Именно в этом отделе возникающие потенциалы действия распространяются на нижележащие отделы и обуславливают регулярные ритмичные сокращения сердца. Итак, способность продуцировать импульсы самому и под их действием осуществлять сокращения — это и есть сердечная автоматия.

4 Проводимость

Еще одно важнейшее свойство миокарда, без которого не представлялось бы возможным осуществление ударов человеческого «мотора». Отдельная система ответственна за данное свойство — проводящая. Представлена она следующими элементами:

  1. СА-узел (он описан выше), в нем клетки-пейсмекеры генерируют импульсы;
  2. Межпредсердный пучок и тракты. Из вышележащего отдела возбуждение переходит на данный пучок и тракты;
  3. АВ-узел, находится внизу верхней правой сердечной камеры, вдаваясь в межжелудочковую перегородку. В данном узле возбуждение несколько притормаживается;
  4. Пучок Гиса и две его ножки. Ветви пучка разветвляются на маленькие, тоненькие волоконца — волокна Пуркинье.

Эта система хоть и содержит отдельные элементы, но работает слаженно и четко, обеспечивая проведение возбуждения строго «сверху-вниз», благодаря чему сначала сокращаются верхние, а затем нижние камеры. Данная система способствует тому, что ни одна клеточка главного «мотора» не остается невозбужденной, а это чрезвычайно важно для его работы.

5 Сократимость

Давайте представим, что только что Вы узнали чрезвычайно радостную новость и Ваше сердце буквально запело от счастья? Заглянув в него на молекулярном уровне, чтобы Вы смогли наблюдать? К сердцу подходят симпатические нервы, которые выделяют некоторое количество химических веществ, помогающих передавать сообщения. А на поверхности клеток сердца есть маленькие рецепторы, при взаимодействии их с химическими веществами в клетке производится сигнал, в клетку попадает Са, соединяется с мышечными белками — возникает сокращение.

6 Возбудимость

Возбудимость сердечной мышцы подчиняется двум основополагающим законом, которые зубрят студенты-медики на предмете «физиология». Познакомимся с этими законами и мы:

  1. «All or nothing» («все или ничего»). Если величина возбуждающего раздражителя недостаточна, мышечная ткань на него не реагирует, а на достаточное по силе раздражение сразу дает максимальный ответ. И если в дальнейшем увеличивать силу раздражителя, данный ответ не меняется.
  2. Франка-старлинга. Чем больше растянута сердечная мышца, тем выше возбудимость и ее сокращение. Если в сердце поступает большее количество крови, миокард пропорционально сильнее растягивается, но и сила сердечных толчков также будет возрастать.

Когда мышца сердца находится в состоянии возбуждения, она не способна отвечать на другие раздражители, данное состояние называется рефрактерностью.
Сложно четко разграничить данные свойства, поскольку все они взаимосвязаны между собой очень плотно, ведь все свойства преследуют одну цель — обеспечить постоянную нормальную способность к миокардиальному сокращению и выталкиванию крови в сосуды.

7 Сколько граммов?

Еще одной важнейшей характеристикой здорового сердца является масса миокарда. Массу миокарда левого желудочка определяют по ЭхоКГ определенными методами: либо по формулам, либо в аппарат уже вбита программа, которая с учетом других данных при исследовании сама, автоматически высчитывает данный показатель. Можно высчитывать непосредственно массу, либо индекс массы миокарда.

Эти данные имеют рамки нормы, для мужчин значения несколько выше, чем для женщин, что вполне объяснимо. В среднем для мужчин масса миокарда = 130-180 г, для женщин — 90-142г., индекс для мужчин 70-90 г/м2, индекс для женщин 70-88 г/м2. Приведенные данные усреднены, поскольку показатели могут меняться в сторону возрастания у людей активно занимающихся спортом. У данной категории лиц сердце «качается», наращивая мышечную массу.

ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ

Кровообращение – это процесс движения крови по сосудистому руслу, обеспечивающий выполнение ею своих функций.

Физиологическую систему кровообращения составляют сердце и сосуды. Сердце обеспечивает энергетические потребности системы, а сосуды являются кровеносным руслом. В минуту сердце перекачивает около 5 литров крови, за год 260 тонн, а в течение жизни около 200"000 тонн крови. Суммарная длина сосудов около 100"000 км.

Первое научное исследование системы произвел У.Гарвей. В 1628 году он опубликовал работу "Анатомическое исследование о движении сердца и крови у животных". В 1653 году монах М.Серве описал малый круг кровообращения, а в 1661 г. Мальпиги под микроскопом обнаружил капилляры.

Большой круг кровообращения начинается аортой, отходящей от левого желудочка. По мере удаления от сердца она делится на артерии большого, среднего и малого калибра, артериолы, прекапилляры, капилляры. Капилляры соединяются в посткапилляры, венулы, затем вены. Заканчивается большой круг полыми венами, впадающими в правое предсердие. Малый круг кровообращения начинается легочной артерией, отходящей от правого желудочка. Она также разветвляется на артерии, артернолы и капилляры пронизывающие легкие. Капилляры объединяются в венулы и легочные вены. Последние впадают в левое предсердие.

Сердце – это полый мышечный орган. Его вес составляет 200-400 грамм или 1/200 массы тела. Стенка сердца образована тремя слоями: эндокардом, миокардом и эпикардом. Наибольшую толщину 10-15 мм она имеет в области левого желудочка. Толщина стенки правого – 5-8 мм, а предсердий 2-3 мм. Миокард состоит из мышечных клеток 2-х типов: сократительных и атипических . Большую часть составляют сократительные кардиомиоциты.

Сердце разделено перегородками на 4 камеры: 2 предсердия и 2 желудочка. Предсердия соединяются с желудочками посредством атриовентрикулярных отверстий . В них находятся створчатые атриовентрикулярные клапаны. Правый клапан трехстворчатый (трикуспидальный), а левый двухстворчатый (митральный). К створкам клапанов присоединяются сухожильные нити. Другим концом эти нити соединены с сосочковыми (папиллярными) мышцами. В начале систолы желудочков эти мышцы сокращаются и нити натягиваются. Благодаря этому не происходит выворота створок клапанов в полость предсердий и обратного движения крови – регургитации . В местах выхода аорты и легочной артерии из желудочков расположены аортальный и пульмональный клапаны. Они имеют вид карманов в форме полумесяцев. Поэтому их называют полулунными. Функцией клапанного аппарата сердца является обеспечение одностороннего тока крови по кругам кровообращения. В клинике функция клапанного аппарата исследуется такими косвенными методами, как аускультация, фонокардиография, рентгенография. Эхокардиография позволяет визуально наблюдать за деятельностью клапанов.



Цикл работы сердца. Давление в полостях сердца в различные фазы сердечной деятельности

Сокращение камер сердца называется систолой , расслабление – диастолой . В норме частота сердечных сокращений (ЧСС) 60-80 в минуту. Цикл работы сердца начинается с систолы предсердий. Однако в физиологии сердца и клинике для его описания используется классическая схема Уиггерса. Она делит цикл сердечной деятельности на периоды и фазы. Длительчость цикла, при частоте 75 ударов в мин., составляет 0,8 сек. Длительность систолы желудочков равна 0,33 сек. Она включает 2 периода: период напряжения, продолжительностью 0,08 сек. и период изгнания – 0,25 сек. Период напряжения делится на две фазы: фазу асинхронного сокращения, длительностью 0,05 сек и фазу изометрического сокращения 0,03 сек. В фазе асинхронного сокращения происходит неодновременное, т.е. асинхронное, сокращение волокон миокарда межжелудочковой перегородки. Затем сокращение синхронизируется и охватывает весь миокард. Давление в желудочках нарастает, и атриовентрикулярные клапаны закрываются. Однако его величина недостаточна для открывания полулунных клапанов. Начинается фаза изометрического сокращения. Т.е. во время нее мышечные волокна не укорачиваются, но сила их сокращений и давление в полостях желудочков нарастает. Когда оно достигает 120-130 мм рт.ст. в левом и 25-30 мм рт.ст. в правом, открываются полулунные клапаны – аортальный и пульмональный. Начинается период изгнания. Он длится 0,25 сек. и включает фазу быстрого и медленного изгнания. Фаза быстрого изгнания продолжается 0,12 сек., медленного – 0,13 сек. Во время фазы быстрого изгнания давление в желудочках значительно выше, чем в соответствующих сосудах, поэтому кровь из них выходит быстро. Но так как давление в сосудах нарастает, выход крови замедляется.

После того, как кровь из желудочков изгоняется, начинается диастола желудочков. Ее продолжительность 0,47 сек. Она включает протодиастолический период, период изометрического расслабления, период наполнения и пресистолический период. Длительность протодиастолического периода 0,04 сек. Во время него начинается расслабление миокарда желудочков. Давление в них становится ниже, чем в аорте и легочной артерии, поэтому полулунные клапаны закрываются. После этого начинается период изометрического расслабления. Его продолжительность 0,08 сек. В этот период все клапаны закрыты и расслабление происходит без изменения длины волокон миокарда. Давление в желудочках продолжает снижаться. Когда оно уменьшается до 0, т.е. становится ниже, чем в предсердиях, открываются атриовентрикулярные клапаны. Начинается период наполнения, длительностью 0,25 сек. Он включает фазу быстрого наполнения, продолжительность которой 0,08 сек., и фазу медленного наполнения – 0,17 сек. После того, как желудочки пассивно заполнились кровью, начинается пресистолический период, во время которого происходит систола предсердий. Его длительность 0,1 сек. В этот период в желудочки закачивается дополнительное количество крови. Давление в предсердиях, в период их систолы, составляет в левом 8-15 мм рт.ст., а правом 3-8 мм рт.ст. Отрезок времени от начала протодиастолического периода и до пресистолического, т.е. систолы предсердий, называется общей паузой. Ее продолжительность 0,4 сек. В момент общей паузы полулунные клапаны закрыты, а атриовентрикулярные открываются. Первоначально предсердия, а затем желудочки заполняются кровью. Во время общей паузы происходит пополнение энергетических запасов кардиомиоцитов, выведение из них продуктов обмена, ионов кальция и натрия, насыщение кислородом. Чем короче общая пауза, тем хуже условия работы сердца. Давление в полостях сердца в эксперименте измеряется путем пунктирования, а клинике – их катетеризацией.

Физиологические свойства сердечной мышцы Автоматия сердца

Сердечной мышце свойственны возбудимость, проводимость, сократимость и автоматия. Возбудимость – это способность миокарда возбуждаться при действии раздражителя, проводимость – проводить возбуждение, сократимость – укорачиваться при возбуждении. Особое свойство – автоматия – это способность сердца к самопроизвольным сокращениям. Еще Аристотель писал, что в природе сердца имеется способность биться с самого начала жизни и до ее конца, не останавливаясь. В прошлом веке существовало 3 основных теории автоматии сердца.

Прохаска и Мюллер выдвинули нейрогенную теорию , считая причиной его ритмических сокращений нервные импульсы. Гаскелл и Энгельман предложили миогенную теорию , согласно которой импульсы возбуждения возникают в самой сердечной мышце. Существовала теория гормона сердца , который вырабатывается в нем и инициирует его сокращения.

Автоматию сердца можно наблюдать на изолированном сердце по Штраубу. В 1902 году, применив такую методику, томский профессор А.А.Кулябко впервые оживил человеческое сердце.

В конце 19 века в различных участках миокарда предсердий и желудочков были обнаружены скопления своеобразных по строению мышечных клеток, которые назвали атипическими . Эти клетки больше в диаметре, чем сократительные, в них меньше сократительных элементов и больше гранул гликогена. В последние годы установлено, что скопления образованы Р-клетками (клетками Пуркине) или пейсмекерными (ритмоводящими). Кроме того, в них имеются также переходные клетки. Они занимают промежуточное положение между сократительными и пейсмекерными кардиомиоцитами и служат для передачи возбуждения. Такие 2 типа клеток образуют проводящую систему сердца . В ней выделяют следующие узлы и пути:

1. синоатриальный узел (Кейса-Флека). Он расположен в устье полых вен, т.е. в венозных синусах;

2. межузловые и межпредсердные проводящие пути Бахмана, Венкенбаха и Торелла. Проходят по миокарду предсердий и межпредсердной перегородке;

3. атриовентрикулярный узел (Ашоффа-Тавара). Находится в нижней части межпредсердной перегородки под эндокардом правого предсердия;

4. атриовентрикулярный пучок или пучок Гиса. Идет от атриовентрикулярного узла по верхней части межжелудочковой перегородки. Затем делится на две ножки – правую и левую. Они образуют ветви в миокарде желудочков;

5. волокна Пуркине . Это концевые разветвления ветвей ножек пучка Гиса. Образуют контакты с клетками сократительного миокарда желудочков.

Синоатриальный узел образован преимущественно Р-клеткми. Остальные отделы проводящей системы - переходными кардиомиоцитами. Однако небольшое количество клеток-пейсмекеров имеется и в них, а также сократительном миокарде предсердий и желудочков. Сократительные кардиомиоциты соединены с волокнами Пуркинье, а также между собой нексусами , т.е. межклеточными контактами с низким электрическим сопротивлением. Благодаря этому и примерно одинаковой возбудимости кардиомиоцитов, миокард является функциональным синцитием , т.е. сердечная мышца реагирует на раздражение как единое целое.

Роль различных отделов проводящей системы в автоматии сердца впервые была установлена Станниусом и Гаскеллом. Станниус накладывал лигатуры (перевязки) на различные участки сердца. Первая лигатура накладывается между венозным синусом, где расположен синоатриальный узел, и правым предсердием. После этого синус продолжает сокращаться в обычном ритме, т.е. с частотой 60-80 сокращений в минуту, а предсердия и желудочки останавливаются. Вторая лигатура накладывается на границе предсердий и желудочков. Это вызывает возникновение сокращений желудочков с частотой примерно в 2 раза меньшей, чем частота автоматии синусного узла, т.е. 30-40 в минуту. Желудочки начинают сокращаться из-за механического раздражения клеток атриовентрикулярного узла. Третья лигатура накладывается на середину желудочков. После этого их верхняя часть сокращается в атриовентрикулярном ритме, а нижняя с частотой в 4 раза меньше синусного ритма, т.е. 15-20 в минуту.

Гаскелл вызывал местное охлаждение узлов проводящей системы и установил, что ведущим водителем ритма сердца является синоатриалькый. На основании опытов Станниуса и Гаскелла, был сформулирован принцип убывающего градиента автоматии . Он гласит, что чем дальше центр автоматии сердца расположен от его венозного конца и ближе к артериальному, тем меньше его способность к автоматии. В нормальных условиях синоатриальный узел подавляет автоматию нижележащих, т.к. частота его спонтанной активности выше. Поэтому синоатриальный узел называют центром автоматии первого порядка, атриовентрикулярный – второго, а пучок Гиса и волокна Пуркинье – третьего.

Нормальная последовательность сокращений отделов сердца обусловлена особенностями проведения возбуждения по его проводящей системе. Возбуждение начинается в ведущем водителе ритма – синоатриальном узле. От него, по межпредсердным ветвям пучка Бахмана, возбуждение со скоростью 0,9-1,0 м/с распространяется по миокарду предсердий. Начинается их систола. Одновременно от синусного узла возбуждение по межузловым путям Венкенбаха и Торелла достигает атриовентрикулярного узла. В нем скорость проведения резко снижается до 0,02-0,05 м/с. Возникает атриовентрикулярная задержка. Т.е. проведение импульсов к желудочкам задерживается на 0,02-0,04 сек. Благодаря этой задержке, кровь во время систолы предсердий поступает в еще неначавшие сокращаться желудочки. От атриовентрикулярного узла по пучку Гиса, его ножкам и их ветвям возбуждение идет со скоростью 2-4 м/с. Благодаря такой высокой скорости оно одновременно охватывает межжелудочковую перегородку и миокард обоих желудочков. Скорость проведения возбуждения по миокарду желудочков 0,8-0,9м/с.

Сердце представляет собой две половинки (левую и правую), каждая из которых в свою очередь состоит из предсердия и желудочка. Левая половинка сердца производит нагнетание артериальной крови, а правая – венозной. В связи с этим, сердечная мышца левой половины значительно больше и толще правой. Мышцы предсердий и желудочков разделены между собой фиброзными кольцами, имеющими специальные клапаны: двухстворчатый - у левой сердечной половины, и трехстворчатый – у правой. Эти клапаны, в момент сердечных сокращений не допускают возврата крови в предсердие. На выходе из аорты и легочной артерии размещаются клапаны, напоминающие визуально полумесяц. Они не допускают возврата крови в желудочки в период общей диастолы сердца.

Сердечная мышца относится к поперечнополосатой мышечной ткани. Именно поэтому она имеет те же самые свойства, что и мышцы скелета. Волокна, из которого они состоят это в основном - сарколеммы, миофибриллы и саркоплазмы.

Посредством сердца обеспечивается циркуляция крови по кровеносным сосудам. Ритмичное сокращение мышц предсердий, а также желудочков, чередуется с их расслаблением. Периодичная смена систолы и диастолы и составляет основной цикл работы сердца. Мышца сердца работает достаточно ритмично, и обеспечивается это специальной системой возбуждения, находящейся в разных сердечных отделах.

Физиологические особенности сердечной мышцы

Возбудимостью миокарда называется способность реагировать на воздействие термических, электрических, химических или механических раздражителей. Сокращение и возбуждение сердечной мышцы происходит в тот момент, когда раздражитель достигает своей максимальной силы. Возбуждения низкого воздействия не эффективны, а чрезмерные - не изменяют силы сокращения миокарда.

Возбужденная сердечная мышца на короткий промежуток времени утрачивает способность реагировать, на поступающие дополнительно раздражители и импульсы. Такая реакция называется рефрактерностью. Раздражители, которые с силой воздействуют на мышцу в период ее рефрактерности, провоцируют внеочередное сокращение сердца, называемое экстрасистолой.

В различных отделах сердца скорость возбуждения отличается. Характерной особенностью процесса возбуждения в сердечной мышце является ее потенциал действия, возникая в одном участке мышечной ткани, он постепенно распространяется и на соседние ее участки.